
Fault-Tolerant Sorting in SIMD Hypercubes

Amitabh Mishra, Y. Chang I,. Bhuyan F’. Lombardi

Department of Computer Science
Texas .4&M IJniversity

(:allege Station, TX 77843

Abstract

This paper conszders sortang a n SIMD hypercube
nrultaprocessors En the presence o f node fazlures. The
proposed algorzthm correctly sorts u p t o 2n = N keys
21) a faulty SIMD hyperrube of dtmt nsaon n containzng
u p to n - 1 faulty n0dt.s The proposed fault-tolerant
abgonfhm employs radix sort. W P u s e a pazr of j l ood
dcmensaons whach help+ t o route daia around the faulty
prsocessors durtng ihe niovement of data. If all ihP key
mtlues to be sorted belong l o thr runge 0 to hf - 1 ,
horting can be accomplishrd efiriently an O(log hf* log
,I) + O(iog2h) tzrne.

Index Terms SIMD, Fault-tolerant, Parallel
Sorting, Radix Sort

1 Introduction

The hypercube architecture has received much at-
ttntion in the literature [l, 2, 31. The nCUBE/2 from
Ncube, iPSC/2 and iPSC/860 froilri In td and CM-2
fmm Thinking Machine are some of the commercd
rILachines based ori ii hypercube structure 14, 51. ‘T’he
higger the size of tha. syst,em, the higher IS the proha-
hility that some processors and/or links rnay fail We-
iiig able to operata= in the presence’ of faults, t h r ~ e -
fore, is of paramount importance Sorting is o11c of
t lie most tmsic algorithms in coinpiiter science Ap-
plications of sorting have been Iiskd in [RI. To the
libst of our knowledgf , t,here is I IO practical farilt-
ttllerant sorting algoritlim for SlMD hypixubes, and
the best known MIMD reliable sortsing algorithm tol-
errttes just one nod(,/ link failure t i 1 an n-cubr, and
hits a O(log2N) corrrpltbxity [7]. I n 181, Leighton aria-
1 y zes the fault-tolerance‘ properties of several b0undt.d-
dc gree networks that are commonly used for parallel
computation In the proposed algorithm we have fo-
cused on SIMD hyperciibcs with ar f i z i i t y control 191
-_____---

*This research has been supported by TATP grant ‘b99‘403-
0 2 5 .

Processors belonging to SIMD machines of this type
can participate in a computation step or abstain from
it based on a local condition Our algorithin tolerates
upto n - 1 faults in an n-cube In our faiilt-tolerant
sorting algorithm, we have employtad radix w r t , which
has been implemented with high performarrce for data
sets with unknown (non-uniform) distributions [lo].
Parallel sorting in hypercubes involves efficient data
movement arnong processors. In the event of a fail-
ure of a processing elemtant, the required i iiformation
IS not sent to its ricighbor In our fault-tolerant algo-
rithm, we ensure that the neighboring no le receives
proper data by performing a so-called flood opera-
tion After finding out two valid flood dimtmions, we
rearrange the ordcr of the diniensioris as f1)llows We
assign dimension numbers 0 and 1 1,o the two selected
flood dimensions ’The r tw”ir ig dimensicins may be
assigned numbers from 2 to n-1 in any ordtr We refer
to the newly-numbered dimerisions as logiral dimen-
sions. After the execution of the sorting algorithm,
the sorted key values reside on PE’s whose indices are
from 0 to N - 1 based on the logical dimerisions

2 The Hypercube Model - Notations
and Definitions

We refer to a processing element as a {’E. An n-
dimension hypercube SI MD computer corisists of N
= 271 PE’s, each of which has a local mernory asso-
ciated with it. A PE, together with its triemory. is
referred to as a node. F;ach node is corrnected di-
rectly to n other nodes by virtue of links. i.e., each
node has n neighbors . Two nodes lying on oppo-
site ends of a link have their addresses tliffering in
exactly one bit. We refer to the it,h PF; as PE(i).
We specify it node PE(?) by its binary i,epresenta-
tion, i n - l i n - 2 ... io. We define i (Q) as the niiinber rep-
resented by i n - l i n -2 . . . ~ ~ + l z , ~ ~ - l . . . i * , where i , is f,he
complement of i,. Hence, P E (i) is directly connected
to PE(&,)).

. . .

1063-7133/95 $4.00 0 1995 IEEE
312

The fault model that we have assumed for the faulty
hypercube is m follows. There might be up to n - 1
randomly located faulty nodes in the hypercube. All
failures are fail-stop; that is, once failure occurs in a
PE, it does not communicate with its neighbors in any
way; it is totally disabled. In addition, it is assumed
that a diagnostic process has been successfully exe-
cuted so that information concerning the location of
faults may be used when reconfiguring the network in
order to circumvent t,hem.

We define a pseudo f a u l t y node as follows. SIMD
multiprocessors carry out data movements along one
dimension at a time. A faulty P E fails to send data to
its neighbor. The neighboring PE now contains spuri-
ous information, and is called a pstwdo faulty node f
denotes the number of faulty PE’s in the hypercube.
‘I he maximum number of faulty PE’s that, the pro-
posed faul-tolerant algorithm tolerates is (n - I) ? so

The notations employed in the dgorithms are sim-
I I (n - 1).

ilar to those in [ll].

3 A Sketch of the Algorithm

The input to the proposed algorithm is the key val-
ues stored in the V registers of the PE’s. By using the
most-significant-bit (MSB) radix sort, log A4 steps are
needed to complete the sorting process. Each step,
corresponding to one bit of the values. takes O(log N)
time. First, values with the MSR equal to 0 (1) arr
ranked, and concentrated into the front (rear) seg-
ment of the set of E’E‘s. As a result, the set of PE’s
is partitioned into regions. At the end of each of the
log M steps, each region is further partitioned into at
most two subregions. Each region has an st (e n) flag
t o indicate whether it is the starting (ending) PE of a
rcgion. Before executing the same procedure for siib-
sequent bits, the startinglending flag is set for each
region starting/ending PE. Next ~ the index/“ of
the region starting/ending PE is broadcast to all PE’s
in that region. This stvp is necessary for the so-called
rcrnk adjustment in different regicms Each of thrse
stops is performed on the hypercube- 111 O(1og N) t,irne,
which causes the main sorting algorithm to be of O(log
h1 *log A‘) time co m pkxi ty .

An example of how our proposed fault-tolerant al-
gorithm operates is illustrated in Figure l . Wc have
a 3-cube having two faulty nodes, PEl(2) and PE(2).
The key values to be sorted are in the I’ regist,ers
of the PE’s. We assiimr that M = 3. First, we
rank the values with the MSB equal to 0 (1 j , and
concentrate them at t,he rear (front) of the set of

lcp I ’ MSB (bl

tap2 b u l

m p 3 h u O

Figure 1: An example of the fault-tolerant, algorit.hm
for a 3-cube

PE’s. In our algorithm, this step is performed by
the R A N K procedure, the BROADCASl procedure
which broadcasts information to each record within a
region about its final destination within that region,
and the CONCENTRATE procedure, which actu-
ally moves records to their final destinations within
the region Then we repeat the process for bit 1 and
bit, 0 of the key values. At the end of each step, two
new regions are created, as illustrated by I he new re-
gion boundaries in Figure 1. New boundaries are rec-
ognized by the SET-FLAGS procedure. 4 t the c d
of step three, we see that the key values have been
sorted.

4 Flood Dimensions

A flood dimension (hereafter referred to as F D)
is a dimension along which messages are t,ransmitted
from fault-free nodes to pseudo-faulty nodes in order
for all pseudo-faulty nodes to receive the required in-
forniation. Having one flood dimension, however. is
not always enough. This is becaust’, prior to flood-
ing, there is a t least one pair of nodes along the flood
dimension in which the trarismitt,ing node is a faulty
node and the receiving node is a pseudo-l’aulty one.
This scenario is illustrated by the following example.
We denote faulty nodes hy ‘x’ and pseudo-faulty ones
by ‘y’. We wish to implement the algorithm given in
Figure 2 on a 4-cube. Algorit,hm First-example is a
small part of the run$ algorithm we describe. later, and
serves to illustrate the inefficacy of having one flood
dimension. The initial values of S(i) are as indkated
in Figure 3. Dimension 0 is the flood diniension for
the example. The steps constituting the execution of
algorithm First-example are shown in Figure 3. We
observe that although flooding has been successful at
each intermediate step, we finally reach ;i situation
where there are two pairs of nodes, each of which con-
sists of a faulty node and a pseudo-faulty node. It. is

3 13

Algorithm First-example
/* n is the dimension of the hypercutle */

begin
1 T (i) = 1

2 f o r q = O t o n - 1 d o
3 T i (q)) t S(i)
4 S { i) = S (i) + T(a)

endfor
end

Figurr 3: Flood Operation

clear that one more flood step along the flood dimen-
sion will not help the pseudo-faulty nodes receive the
correct data. This is called an x-y condition.

Our example shows that having one flood dinien-
sion is insufficient in the worst case. We must. there-
fore, have at least a pair of FD’s. ‘The following theo-
rt*m proves that having two FD’s is sufficient in order
i o carry out flooding.

Theorem 1. I n an n-dzmensicmal hypercube with
at most (n-1) faults, it as always posszble t o find U pair
of FDs such that thwe is never an. x-y condition along
hoth the dimensions si,mulianeoushy.
Proof: Please refer t,o [ti].

4.1 Finding an E‘D-pair

One pair of FDs is sufficient for our algorithm to
mork. In this subsection, we prmide aii efficient al-
gorithm to find an FD pair by elinmating all pairs of
dimensions that can not possibly }le FD-pairs I n the
uorst case, whenever t NO faulty PE’s are located ,it i t

distance of two (links) from each other, the two dimen-
sions of the 2-cube constituted hy these faulty nodes
nray not be an EI)-p.tir In addition, if two faulty
PE’s are neighbors alcrng a dimtmsion, then that di-
niension can not obviously be used as a flood dimen-

Algorithm Find-FD-pair
/ * n is the dimension of the hypercube */
begin

1 f o r j = O t o f - 1 d o
2 f o r k = D t o f - l d o
3 if dis tance(FAULTb],FAUI,T[k]) = = 1
4 discard(dimension 1

6 discard(dimension 1 , dimension2)
5 if di5t.nce(I.nU~Tlij,FAuLT[kl) ==2

7 endfor
end

Figure 4: Algorithm for finding an F1)-pair

Algorithm Dimension-seq
begin

1 for a = 0 to 2n - 1
2 s e q [a] = 0
3
4
5
t, fork= 1 t n do

h endfor
$ 8 endfor
10 endfor

if 1%2 = 1 then s e q [i] = [1/21
if a%2 = 0 and a 2 2 then

for 5 = F[O] to F[f - 11 do

if = 1 then s e q [2 k - 11 = 1

end

Figure 5:
quence

Algorithm for finding the diriiension se-

sion. The algorithm to find an 1‘D-pair is given in
Figure 4. FAULT[O]. FAULT[l], ..., FAUL’I’[f - I] rep-
resent, the addresses of the faulty PE’s. Thth procedure
distance calculates the distance, in terms of number
of links, between the two PE’s in its argurnent. Lines
3 and 5 take O(n) time because node addresses arc of
n bits. If it is performed in parallel on 11 nodes, the
procedure takes O(n2) , or O(log2N). time to execute.

4.2 Determining the sequence of dimen-
sions for flooding

We perform the flood operation after mch step of
the fault-free algorithm. Flooding may t8ake place
aloiig either of the two FDs belonging t,o the FD pair.
Let, us refer to thr two E’Ds as dimensioris 0 and 1.
Usually, we flood along dimension 0 each time, unless
we encounter an x-y condition along this dimension
(in which case wv choose dimension 1 to Ylood). We
predetermine the dimension seqt1t:nc.c for flooding to
take place.

During the execiitiori of the fault-free sorting algo-
rithm , the dimension sequence for transferring infor-
mation l)et,ween neighbors is 0, 1, 2 , 3, 4, ..., 12-1. In
the fault-tolerant algorit,hm, the diniensioti sequence,
inchiding flood dimensions, would be 0, 1, *, 2, *, 3, *,
4, *) 5, *, ‘rhr *’s represent the flood liimensions,

3 14

Figure 6: Example for determining a dimension se-
(1 iience

aiid equal either 0 or 1 The procedure Dimension-seq
(I’igure 5) determines the dimension sequence The
a i ray f a u l t (maintained i n the PE:) records informa-
tion about faulty PE’!, ,fault[i] == l(0) means that
I ’ E (i) is faulty (fault-free) The register F contains
a list of all fault-free PE’s such that their neiglihors
along dimension 0 are fnulty The rvgister sr~q contains
the dimension s e q i i ~ n c ~ ~ after the execution of the pro-
ct dure The way pro(edure Dirncnsion-seq operates
stiould be clear from the example shown iri Figurv 6
There are three faulty PE’s in the 4-cube. Line 4 of
tlie procedure Dimension-seq coiers the O-th t h e n -
sirm neighbors of faulty PE’s, that is, nodes 3, 5 nnd
1:’ Consider node 3 7 he neighbor, along dimensions
I 2 and 3 are indicated in Figurf, 6 Thc neighbor of
node 3 along dinlension 3 15 fault), which will rcsull in
ari x-y condition after (bxecxtion along dimension 3 of
tl e fault-tolerant algonthni (PE 11 IS “x” PE 3 will be
‘‘J ”) Hence, the flood (Iimension t c he employed (tfter
dimension 3 of t h t fault-tolerant algorithm IS ctiinm-
sion 1 After considering PE’s 5 and 12 in a sirnilar
fashion, the dimcmion sequence is iound to be 0 , 1 0
2 0 3 , l

5 Fault-tolerant Algorithm

The sorting algorithm is composed of four proce-
dures: RANK, BROADCAST, CONCENTRATE and
SF;T-FLAGS. For a detailed treatment, of the proofs of
correctness and examples of these algorithms, please
sw: [6].

5.1 RANK

The rank of a P E is defined as thc number of PE’s
having an active record preceding i t . An active record
is defined as a record that satisfies a certain condition
s11t.h as, for example, having a particular bit of the
value equal to 0 or 1. p indicattbs bit, p of the value
of the record, and 1 is equal to 0 or 1. Hence, an
active record is a record with V (i) , -= t . ‘The ranking
algorithm is given in Figure 7. Register A contains
information regarding whtsther a given PE is active

procedure RANK(p, t , u o r R)
I R(a) = O , F (r) = O,T(t) = n u l l
3 S(8) = I iV(i) , = 1)
3 S (t) = O(V(l), # t)

5 T t (q) i - S (~ I begin
4

6
7
c;
53
10
11 endif
12
13
14

15
16

17

18 endif
19 endfor

for q = seq[0] to seq[Zn - 21 do

F l r) = T (l) (J = 0)
if O-th or odd-numbered step/* fault-free s ep */
R(a) = R (E) + T (t) (t q = 1 & T(z) # null)
S(a) = S (t) + T(t) (T(a) # null)
S(a) = null R (r) = ~ ~ i i l l (T (~) = nul l)

if even numbered step & greater t h a n 0 /* , h o d s t e p */
S(a) - S (t (q)) (S (~) = nu l l)
R(a) - R (r t q)) . R(1) = R(z) - A(%) (a q = 0 & q = 0 &

R(a) - (R (I (~)) + A (L (~))) (z q = 1 & q = 0 b . ! (a) = null)
R(a) - R (% (q J) , R(a1 = R (z) - A l l) - A (L + I) (t q = 0 k

H (t) +- R(r (‘)) , H(zi = R (Z) + A (~ (~)) + A (I ”) + ~) (Z ~ = 1

S i t) = null)

q = 1 81 ! (a) = nu l l)

& q = 1 Rr S(t) = null)

end

Figure 7: Fault-tolerant RANK algorithm

or not. A[i] = l(0) implies that the PE is active(not
active). F is the register that indicates the preseiice
of a faulty neighbor along dimension 0. 1 9 (i) = null
means that i ’ s neighbor along dimerision 0. is faulty.
Register S(i) has a value of 1 if P E (?) is active, 0 if it
is not active, and null if it, is pseudo-fault!,. Register
R contains the rank of each PE.

An example of the RANK algorithm is given in Fig-
ure 8. The register seg, in this case, contains the di-
mension sequence 0, l l 0, 2, 0, 3, 1. In ot.her words,
we employ FI.) 0 tJo flood after executing thc algorithm
along dimensions 1 and 2, and FD 1 after dimension
3 . The register R, as indicated at the bottom row of
the figure, contains the correct rank in each fault-free
PE.

5.2 BROADCAST

A region is defined as a maximal set of consecutive
PE’s having the same value in the pth bit of V (i) ,
where O 5 p 5 R. Broadcasting is an operation that
distributes the data in the region st,arting/ending PE
tjo all the PE’s belonging to that region. a = 0(1)
implies the selection of the region starting(e1iding) PE,
while b = 0(1) indicates that it is the iridex(rank)
which must be broadcast. st(i) = 1 implies t,ha.t P E (i)
is the starting PE of a region, while en(i) ::= 1 means
that PE(i) is the ending PE of a region.

The procedure t,o perform the broadcast. operation
is given in Figure 9. Registers C arid D denote the
transmitting and the result registers, respectively. Af-

3 15

X

I 0 1 2 3
*.a

m b O 1 l l

q, 0 0 x 0

sa 1 0 x 1

('0 U 1-J

X
I 5 b T . "
Z l i 4

X O (I 0

X I 0
L I L A

Figure 8: 1:xample of R A N K

ter the broadcast operation, D(7) contains the value
of the index/rank of the starting/mding PE of the re-
gion in which PE(1') lics. We visualize the hypercube
as an array of PE's indt.xed from left to right, starting
with index 0 and ending with N-1 The D register o f a
non-source PE changes its value only when it wceives
dnta from its left side for the first time The (7 rcg-
isher of a non-source PE, on the other hand, changes
i t r value under either of the following two conditions
((I) when it has null data and rwviws data from its
lrft side, or (b) when it receives any data from its right,
side.

An example of th+. BROADCAST algorithm is
given in Figure 10 A5 a i t h the ranking procedure,
tlie array seq holds the predetermined sequcnce of di-
mensions, for both regular operat 1011 and flooding In
t h e example, we consider a 4-cuhe with a = 0 , b = 0.
lri the context of our fault-free algorithm, the 'stdrt-
irig PE' of a region nieans the first fault-free PE, of
tllat, region. As usual, Hooding is not performed after
(I = 0, but is performed after higher values of q In the
piid, we observe that fault-free P E ' 8 have the proper
f P values.

Figure 9: Fault-tolerant BROADCAST algorithm

3 16

Figure 11: Example of (:ONCENTRATE for a 4-cube

Figure 12: Fault-tolerant CONCENTRATE algorithm

17
18 endif
19 endfor

r(i) = S(i) (r ’ (i) = null & i,+l = i ,)

end

Figure 13: Fault-tolerant SET-FLAGS algorithm

5.4 SET-FLAGS

This procedure sets the s t (en) flag of a PE; if i t is the
starting(ending) PE of a region. SET-FLAGS simply
creates new region boundaries: every region is divided
into two sub-regions now, one containing the 0’s and
the other, 1’s. The algorithm is given in Figure 13.

5.3 CONCENTRATE

5.5 The complete SORT procedure

This procedure (see Figure 12) deals with what is
known as the adjusted rank of a PE, which we define
as follows [l l] : adjusted rank = absolute rank + index
of the region-starting/ending PE - absolute rank of
the. region-starting/ending PE. The CONCENTRATE
procedure concentrates all active records (records with
bit p of the data being equal to 0 (1)) in the front (rear)
of their respective regions. The purpose of this proce-
diire should be clear from the example shown in Fig-
urc’ 11. In fact, the adjusted rank of a, record is also its
final destination. The input to the algorithm consiqts
of the key values of active records, and their adjusted
rartks. v(i) and R(i) represent tht. key value and the
aci.iusted rank of an active record, respectively. They
arc. the transmitting registers of PE(i). The “primed”
registers are employed as temporary storage in order
to avoid conflicts.

The complete SORT procedure is given in Fig-
ure 14, and is similar to the fault-free SORT procedure
in [ll]. Each iteration of the complete algorithm (lines
4 to 17, included) accomplishes radix sort along one
bit of the key values on the PE’s, and takes O(1og N)
time. The main sorting algorithm, thus, is olcomplex-
ity O(1og M+log N) . Finding an FD pair, a one-time
procedure, takes O(log2h:) time to complete. There-
fore, the complete algorithm may be accomplished in
OQog M*Iog N) + O(log2N) time.

Line 2 sets the st and the en flags for the initial
region which encompasses all the PE’s. Lines 4-7 (8-
11) compute the adjusted rank for each key value with
V(i) , = 0 (V (i) , = 1). After the CONCENTRATE
operation, the flag-setting operation is performed for
the newly-created regions in line 17.

317

procedure SORT
1 s t (;) = en(i) = 0
2 ~ t (0) = en(N - 1) = 1

3
4 RANWp,O,Ro)
5

6

begin
for p = log M - 1 t o 0 do

BROADCAST(O , O , S) /* region-bt arl,ing indices*/

BROADCAST(0 1 , H ‘) /* region-starting ranks*/
7
8 R A N K (P , ~ , A I 1
9

Ro(a) = f k 1 (8) f S(I) - R ’ (t) (v(6 t P = 0) /* adj rank */
BROADCAST1 1 0 , E) / * region-en ling indices*/

10
11
12 VI (1 I = Vo(a) nvlY
13
14
15
16
17
18 endfor

BROADCAST(1 1,R’) / * region-ending rank3 */
R I (%) = X I (Z) -t E (%) - R I (*) (V i ,

Vt(z) = V (%) (G ‘ (Z) ~ = t
CONCENTRATE(\’,,, R o) /* to cltstination * /
COiVCENTRATE(I.i, R I) /* to clcstiriation */
V (e) = V t (t) (L ‘ (z) , = t I
SET-FLAGS /* for starting/endrriF PE’s * /

= 1) / * adj rank * /

end

Figure 14: The complete SORI’ procedure

6 CONCLUSION

In this paper. we dweloped a iiew fault-tolerant
sorting algorithm that sorts upto 2” = IV keys LII a
faiilty SIMD hypercube We introduced the concept of
f lood dimensions in order to routc data around faulty
processors. Our algorithm can be extended to r u n cm
hl FMD hypercubw k’ut,iire research direct ions include
extending the algorithni to sort mow than N kels, arid
rwlucing the number cd flood sttys, if not thta tirne
complexity, needed to ensure the correct execution of
thc sorting algorithni.

References

B. Becker and €1. Simon, “How Robust is the 11-

Cube?,” Inforniatzon and Computatzon, pp 162-
178, 1988.

A. Wang, R. Cypher, and Mayr, “Embedding
Complete Binary Trees in Faulty Hypercubes,” In
Proc. Internatzonui Symposzum on Parallel and
Distrzbutetl Processang, pp. 112- 119, December
1991 I

M. Y. Chan arid S J Lee, .‘Fault-’I’olerant Em-
bedding of Coinpletcb Binary Trees in IIqprr-
cubes,” IE’EE Trarisartzons o n Parallel and Llis-
trzbutrd STystems, p p . 277-288, March 1993

G. S. Alrnasi and A. Gottlieb, Hzghly Paral-
lel Computzng, Btajamin/Cmrnmings, Redwood
City, CA, 1989

[5] Y. Chang, “Fault Tolerant Broadcasting Algo-
rithms in SIMD Hypercubes,” In Proc. Inter-
national Symposium on Parallel and Distributed
Processing, pp. 348451, Dec. 1993.

[6] A. Mishra, Y . Chang, L. N . Bhuyan, and F. Lorn-
bardi, “Fault-Tolerant, Sorting in SIM D Hyper-
cubes,” Technical Rcport 95-004, Department, of
Comput,cr Science, Texas A&M University, Jan-
uary 1995.

[7] B. M. McMillin and L. M. N i l “Reliable
Distributed Sorting Through the Application-
Oriented Fault Tolerance Paradigrir ,” IEEE
Transactions on Parallel and Distrabuted Sys-
tems, pp. 411 420, July 1992.

[8] T. Leighton, B. Maggs, and R. Sitaraman, “On
the Fault Tolerance of Some E’opular Bounded-
Degree Net,works,” In 39rd 1EEE Symp on Foun-
dation-s of Computer Science, pp. 542- 552, 1992.

[9] P. J . Narayanari, “Processor Autonomy on SIMD
Architectures,” In Yroc. the AC,‘M Iniernatioiial
Conference on Supercornputing, pp. 127 -136, July
1993.

[lo] G. Blelloch, C. E. Leiserson, B. M . Maggs, C. G.
Plaxton, S. J . Smith, and M. Zagha, “A Com-
parison of Sorting Algorithms for the (‘onnection
Machine CM-2,” In Symposiurn on Parallel A l y o -
rithms and Architectures, pp. 3-16, July 1991.

[11] W.-M. Lin and V. K . 1’. Kumar, “Eficicnt
Histogramming on Hypercube SIMD Machines,”
Gomputrr Viszon, Graphics, and Image Process-
ing, vol. 41, pp. 104.- 120, 1990.

3 18

