Fault-Tolerant Sorting in SIMD Hypercubes

Amitabh Mishra Y. Chang

L.. Bhuyan F. Lombardi

Department of Computer Science
Texas A&M University
College Station, TX 77843

Abstract

This paper considers sorting in SIMD hypercube
multiprocessors in the presence of node failures. The
proposed algorithm correctly sorts up to 2" = N keys
w a faulty SIMD hypercube of dimension n containing
up to n — 1 faulty nodes. The proposed fault-tolerant
algorithm employs radiz sorl. We use a pair of flood
d:mensions which helps to route data around the faulty
processors during the movement of data. If all the key
velues 1o be sorted belong to the range 0 to M -1,
sorting can be accomplished efficiently in O(log M+log
N) 4+ O(log*N) tume.

Index Terms:
Sorting, Radix Sort.

SIMD, Fault-tolerant, Parallel

1 Introduction

The hypercube architecture has received much at-
tention in the literature [1, 2, 3]. The nCUBE/2 from
Ncube, iPSC/2 and iPSC/860 from Intel and CM-2
from Thinking Machine are some of the commercial
machines based on a hypercube structure [4, 5]. The
bigger the size of the system, the higher is the proba-
bility that some processors and/or links may fail. Be-
ing able to operate in the presence of faults, there-
fore, is of paramount importance. Sorting is one of
thie most basic algorithms in computer science. Ap-
plications of sorting have been listed in [6]. To the
best of our knowledge, there is no practical fanlt-
tolerant sorting algorithm for SIMD hypercubes, and
the best known MIMD reliable sorting algorithm tol-
erates just one node/ link failure in an n-cube, and
has a O(logZN) complexity [7]. In [8), Leighton ana-
lyzes the fault-tolerance properties of several bounded-
degree networks that are commonly used for parallel
computation. In the proposed algorithm, we have fo-
cused on SIMD hypercubes with activity control [9).

1 This research has been supported by TATP grant %99903-
025.

1063-7133/95 $4.00 © 1995 IEEE

Processors belonging to SIMD machines of this type
can participate in a computation step or abstain from
it based on a local condition. Our algorithin tolerates
upto n — 1 faults in an n-cube. In our fault-tolerant
sorting algorithm, we have employed radix sort, which
has been implemented with high performance for data
sets with unknown (non-uniform) distributions [10].
Parallel sorting in hypercubes involves efficient data
movement among processors. In the event of a fail-
ure of a processing element, the required information
is not sent to its neighbor. In our fault-tolerant algo-
rithm, we ensure that the neighboring node receives
proper data by performing a so-called flood opera-
tion. After finding out two valid flood dimensions, we
rearrange the order of the dimensions as follows. We
assign dimension numbers 0 and 1 to the two selected
flood dimensions. The remaining dimensicns may be
assigned numbers from 2 to n—1 in any order. We refer
to the newly-numbered dimensions as logical dimen-
sions. After the execution of the sorting algorithm,
the sorted key values reside on PE’s whose indices are
from 0 to N — 1 based on the logical dimeunsions.

2 The Hypercube Model - Notations
and Definitions

We refer to a processing element as a PE. An n-
dimension hypercube SIMD computer cousists of N
= 2" PE’s, each of which has a local memory asso-
ciated with 1t. A PE, together with its memory. is
referred to as a node. FEach node is connected di-
rectly to n other nodes by virtue of links. 1.e., each
node has n neighbors. Two nodes lying on oppo-
site ends of a link have their addresses differing in
exactly one bit. We refer to the ith PE as PE(:).
We specify a node PE(:) by its binary representa-
tion, iy_1in_9...99. We define il4) as the number rep-
resented by t,_18n-2...8g417¢i4—1...10, Where 1, is the
complement of i,. Hence, PE(¢) is directly connected
to PE(#(9)).

The fault model that we have assumed for the faulty
hypercube is as follows. There might be up ton — 1
randomly located faulty nodes in the hypercube. All
failures are fail-stop; that is, once failure occurs in a
PE, it does not communicate with its neighbors in any
way; it is totally disabled. In addition, it is assumed
that a diagnostic process has been successfully exe-
cuted so that information concerning the location of
faults may be used when reconfiguring the network in
order to circumvent them.

We define a pseudo faulty node as follows. SIMD
multiprocessors carry out data movements along one
dimension at a time. A faulty PE fails to send data to
its neighbor. The neighboring PE now contains spuri-
ous information, and is called a pseudo faulty node. f
denotes the number of faulty PE’s in the hypercube.
The maximum number of faulty PE’s that the pro-
posed faul-tolerant algorithm tolerates is (n — 1), so
F<(n—1).

The notations employed in the algorithms are sim-
ilar to those in [11].

3 A Sketch of the Algorithm

The input to the proposed algorithm is the key val-
ues stored in the V registers of the PE’s. By using the
most-significant-bit (MSB) radix sort, log M steps are
needed to complete the sorting process. Each step,
corresponding to one bit of the values, takes O(log N)
time. First, values with the MSB equal to 0 (1) are
ranked, and concentrated into the front (rear) seg-
ment of the set of PE’s. As a result, the set of PE’s
is partitioned into regions. At the end of each of the
log M steps, each region is further partitioned into at
most two subregions. Each region has an st (en) flag
to indicate whether it is the starting (ending) PE of a
region. Before executing the same procedure for sib-
sequent bits, the starting/ending flag is set for each
region starting/ending PE. Next, the index/rank of
the region starting/ending PE is broadcast to all PE’s
in that region. This step is necessary for the so-called
rank adjustment in different regions. Each of these
steps is performed on the hypercube in O(log N) tiine,
which causes the main sorting algorithm to be of O(log
M *log N') time complexity.

An example of how our proposed fault-tolerant al-
gorithm operates 1s illustrated in Figure 1. We have
a 3-cube having two faulty nodes, PE(2) and PE(4).
The key values to be sorted are in the V registers
of the PE’s. We assume that M = 3. First, we
rank the values with the MSB equal to 0 (1), and
concentrate them at the rear (front) of the set of

313

front rear
01 2 3 4 5 6 7

v Lol 2l of 1]

sepl :MSBG®&2) | 1| 0| x| 2| x| 1[O] 1

x denotes s fauliy PE

Y denotes the region bounderies
at the end of each step

siep 2 bit 1 1ol x| 1yx{ofl1f2
#ep 3 bit 0 ol of xf 1] x| 1]1]2

Figure 1: An example of the fault-tolerant algorithm
for a 3-cube

PE’s. In our algorithm, this step is performed by
the RANK procedure, the BROADC AST procedure
which broadcasts information to each record within a
region about its final destination within that region,
and the CONCENTRATE procedure, which actu-
ally moves records to their final destinations within
the region. Then we repeat the process for bit 1 and
bit 0 of the key values. At the end of each step, two
new regions are created, as illustrated by the new re-
gion boundaries in Figure 1. New boundaries are rec-
ognized by the SET-FLAGS procedure. At the end
of step three, we see that the key values have been
sorted.

4 Flood Dimensions

A flood dimension (hereafter referred to as F'D)
is a dimension along which messages are transmitted
from fault-free nodes to pseudo-faulty nodes in order
for all pseudo-faulty nodes to receive the required in-
formation. Having one flood dimension, however. is
not always enough. This is because, pricr to flood-
ing, there is at least one pair of nodes along the flood
dimension in which the transmitting node is a faulty
node and the receiving node is a pseudo-faulty one.
This scenario is illustrated by the following example.
We denote faulty nodes by ‘x’ and pseudo-faulty ones
by ‘y’. We wish to implement the algorithm given in
Figure 2 on a 4-cube. Algorithm First-example is a
small part of the rank algorithm we describe later, and
serves to illustrate the inefficacy of having one flood
dimension. The initial values of S(7) are as indicated
in Figure 3. Dimension 0 is the flood dimension for
the example. The steps constituting the execution of
algorithm First-example are shown in Figure 3. We
observe that although flooding has been successful at
cach intermediate step, we finally reach a situation
where there are two pairs of nodes, each of which con-
sists of a faulty node and a pseudo-faulty node. Tt is

Algorithm First-example

/* n is the dimension of the hypercube */
1 T()=1

begin
2 for g =0ton—1do
3 7)) — $(i)
4 S(i) = S(i) 4 T(i)

endfor
end

Figure 2: Example to illustrate an x-y condition

x x x

i o 1 2 3 4 s s T B 5 10 m 1 13 4 15

sé 1 o X 1 X 3 i 9 0 0 1 X 1 0 o 1

quy L—1 f— [B— [— [— Lo [N R
| —— | T |

86y 11 x 10X 1t 1 1 8 0 & X 1 '

L) L) L 1 [

9!

36) y 2 X 2 X 1 y 2 1 y L X 2 1 2 2

oot [[_— [R— [I— I —d
T S e B T

6) LI R . Iy L K 2 2 1 1

ae? S =

s y “+ x 4 X 4 ¥ 4 3 3 1 x 3 3 3 y

Boos d J— d [S— | E— o | —— ——

s 4 4 X 4 X 4 2 4 3 3 3 X 3 3 3 1

gt L - S " (mwet of Weesseittiey patie owaithed for claricy's sale)

so 1 T X 3> ox 1 o1 o1 1 7 Cy X oy 117

R T . - Coed e

f— | S— ~ﬂ/¢

bS
s No flooding pomible skang dimeasios 5o

Figure 3: Flood Operation

clear that one more flood step along the flood dimen-
ston will not help the pseudo-faulty nodes receive the
correct data. This is called an x-y condition.

Our example shows that having one flood dimen-
ston is insufficient in the worst case. We must, there-
fore, have at least a pair of FD’s. The following theo-
rem proves that having two FD’s is sufficient in order
to carry out flooding.

Theorem 1. In an n-dimensional hypercube with
at most (n-1) faults, it is always possible to find a pair
of FDs such that there is never an z-y condition along
both the dimensions simultaneously.

Proof: Please refer to [6].
4.1 Finding an FD-pair

One pair of FDs is sufficient for our algorithm to
work. In this subsection, we provide an efficient al-
gorithm to find an FD-pair by eliminating all pairs of
dimensions that can not possibly he FD-pairs. In the
worst case, whenever two faulty PE’s are located at a
distance of two (links) frorn each other, the two dimen-
sions of the 2-cube constituted by these faulty nodes
may not be an FD-pair. In addition, if two faulty
PE’s are neighbors along a dimension, then that di-
niension can not obviously be used as a flood dimen-

314

Algorithm Find-FD-pair
/* n is the dimension of the hypercube */
begin
for j =0tof~1do
fork=0to f —1do
if distance(FAULT[j],FAULT[k]) ==
discard(dimension1
if distancc(FAULT[jf,FAULT[k] ==
discard(dimension1, dimension2)
endfor
end

IO U A W e

Figure 4: Algorithm for finding an FD-pair

Algorithm Dimension-seq
begin
1 fori =0to2n—1
2 seq[i]=0
3 if i%2 = 1 then seq[i] = [i/2]
4 ifi%2 = 0 and i > 2 then

5 for i = F[0] to F{f — 1] do
6 fork:lt?ndo
7 if faulti*)] = 1 then seq[2k — 1]=1
8 endfor
9 endfor
10 endfor
end

Figure 5: Algorithm for finding the dimension se-
quence

sion. The algorithm to find an FD-pair is given in
Figure 4. FAULT[0], FAULT(1],..., FAULT[f — 1] rep-
resent the addresses of the faulty PE’s. The procedure
distance calculates the distance, in terms of number
of links, between the two PE’s in its argurment. Lines
3 and 5 take O(n) time because node addresses are of
n bits. If it is performed in parallel on n nodes, the
procedure takes O(n?), or O(log?N), time to execute.

4.2 Determining the sequence of dimen-
sions for flooding

We perform the flood operation after each step of
the fault-free algorithm. Flooding may take place
along either of the two FDs belonging to the FD pair.
Let us refer to the two FDs as dimensions 0 and 1.
Usually, we flood along dimension 0 each time, unless
we encounter an x-y condition along this dimension
(in which case we choose dimension 1 to flood). We
predetermine the dimension sequence for flooding to
take place.

During the execution of the fault-free sorting algo-
rithm, the dimension sequence for transferring infor-
mation between neighbors is 0, 1, 2, 3, 4, ..., »-1. In
the fault-tolerant algorithm, the dimension sequence,
including flood dimensions, would be 0, 1, *, 2, * 3, *
4,*% 5 * ... The *’s represent the flood dimensions,

o 1L 2 3 4 5 & 7 8 9 10 U @ B 14 Is
O O @ e O O Ol0O D C e ¢ O O
X X x
N ST S
1 - . l_; —— -
@ Fay ® 3
() Fulifrea

Figure 6: Example for determining a dimension se-
quence

and equal either 0 or 1. The procedure Dimension-seq
(Figure 5) determines the dimension sequence. The
array fault (maintained in the PE) records informa-
tion about faulty PE’s. fauli[i] 1(0) means that
PE(2) is faulty (fault-free). The register F contains
a list of all fault-free PE’s such that their neighbors
along dimension 0 are faulty. The register seq contains
the dimension sequence after the execution of the pro-
cedure. The way procedure Dimension-seq operates
should be clear from the example shown 1 Figure 6.
There are three faulty PE’s in the 4-cube. Line 4 of
the procedure Dimension-seq covers the 0-th dimen-
sion neighbors of faulty PE’s, that is, nodes 3, 5 and
12. Consider node 3. The neighbors along dimensions
1. 2 and 3 are indicated in Figure 8. The neighbor of
node 3 along dimension 3 is faulty, which will result in
an x-y condition after execution along dimension 3 of
the fault-tolerant algorithm (PE 11 is “x”, PE 3 will be
“y7). Hence, the flood dimension tc be employed after
dimension 3 of the fault-tolerant algorithm is dimen-
sion 1. After considering PE’s 5 and 12 in a sumnilar
fashion, the dimension sequence 1s found to be 0, 1, 0,
2.0,31.

5 Fault-tolerant Algorithm

The sorting algorithm 1s composed of four proce-
dures: RANK, BROADCAST, CONCENTRATE and
SET-FLAGS. For a detailed treatment of the proofs of
correctness and examples of these algorithms, please

see [6].

5.1 RANK

The rank of a PE is defined as the number of PE’s
having an active record preceding it. An active record
is defined as a record that satisfies a certain condition
such as, for example, having a particular bit of the
value equal to 0 or 1. p indicates bit p of the value
of the record, and ¢ is equal to 0 or 1. Hence, an
active record is a record with V(2), = t. The ranking
algorithm is given in Figure 7. Register A contains
information regarding whether a given PE is active

315

procedure RANK(p,t,varR)
1 R(i) = 0, F(3) = 0,T(i) = null
2 8(i) = 1V (i) = 1)
3 SE)=0V()p #£1t)
begin
1 for ¢ = seq[D] to seg[2n — 2] do
5 7@ED) — 531)
6 FE’L‘) =T()7 =0)
7 if 0-th or odd-numbered step/* faulit-free siep */
& R(i) = R+ T(i)ig = 1 & T(i) # null)
o S(i) = SG) + T()T () # null)
10 S(i) = null, R(i) = null(T(i) = null)
endif

12 if even-numbered step & greater than 0 /* flood step */
13 §(i) — SEDYS() = null)
14 R(G) — RGEYY, RO) = RE)— A (i, =0 & g =0 &

S§(2) = null)
15 R(i) — (RGECDY4+AGD) (i, = 1 & ¢ = 08 S() = null)
16 R(i) — R(()), R = R(i) = Ali)— A{i+ 1) (i, = 0 &
g=1& S§(i) = null)

17 R() — R(D), R(i) = R+ A+ AG D +1)(ig = 1
& ¢g=1 & S§(i) = null)

18 endif

19 endfor
end

Figure 7: Fault-tolerant RANK algorithm

or not. A[i] = 1(0) implies that the PE is active(not
active). F' is the register that indicates the presence
of a faulty neighbor along dimension 0. F(¢) = null
means that :’s neighbor along dimension 0, is faulty.
Register S(i) has a value of 1 if PE(1) is active, 0 if it
1s not active, and null if it is pseudo-faulty. Register
R contains the rank of each PE.

An example of the RANK algorithm is given in Fig-
ure 8. The register seq, in this case, contains the di-
mension sequence 0, 1, 0, 2, 0, 3, 1. In other words,
we employ FD 0 to flood after executing the algorithm
along dimensions 1 and 2, and FD 1 after dimension
3. The register R, as indicated at the bottom row of
the figure, contains the correct rank in each fault-free
PE.

5.2 BROADCAST

A region s defined as a maximal set of consecutive
PE’s having the same value in the pth bit of V(3),
where 0 < p < n. Broadcasting is an operation that
distributes the data in the region starting/ending PE
to all the PE’s belonging to that region. a = 0(1)
implies the selection of the region starting(ending) PE,
while b = 0(1) indicates that it is the index(rank)
which must be broadcast. st(i) = 1 implies that P E(7)
is the starting PE of a region, while en(i) == 1 means
that PE(7) is the ending PE of a region.

The procedure to perform the broadcast operation
15 given 1n Figure 9. Registers C' and D denote the
transmitting and the result registers, respectively. Af-

b3 X X
i o 1 2 3| 4 5 & 7|8 9 © wul @ B 4 s
e+
mx 0 1 1 L] 2 2 3 4} & 4 4 sls 6 6
®g) o o x o x o o olo a w x}|a o o
s@ t o x t{x 1+ . oo o 1 x|1 o &
o L—d et L JESUEN I [S S S
RO} o 1 x ol x o0o_ 0o 1|lo o o 1o g

T 1 ; ! oy [a—
56 L1 X 1| X 1t 1]o o X[t 1 11
et L [I— | B
%0 e 1 rpx 0o oy 1]o0 y X 0o 1 1
s® y 2 10X 2 oy 2t oy i x| 2 1 1 2
Moot L | | L] — e
ELoY
Ro! ° 1 X 1 X o 3 2

I ey
6 1 1 TR
a2 e o]
26! o 1 X 1 X 2 v 4/l o0o o a9 x| 1 2 2 .y
6 y 4 X 4| X 4 o <3 3 a2 x| 3 3 3 gy
POUURR (' SN 1 S AN N I ST I VA B
P
6 ¢ 1 x 1] x 2 3 4|0 o o X{ 1 1 1 12
SGi 4 4 X 4| x 4 4« a2 3 3 x| 3 3 31 1
g-3 L L + (ron o trom it pachs oemesed for clatity's sake)
RG) [1 X 1 X 2 3 - + 4 y X Y 6 L L]
50 7 71 ox y| x v o il o1 oy x|y 1 1
foot L | O S [I I | I
#nn No flooding possitle slong dissemsion zero - flood slang diaxmsioa cae

|

R0 o 1 x 1| X 2 3 ¢ 4 4 4 X| s 6 6 &
ek

Figure 8: Example of RANK

ter the broadcast operation, D(7) contains the value
of the index/rank of the starting/ending PE of the re-
gion in which PE(i) lies. We visualize the hypercube
as an array of PE’s indexed from left to right, starting
with index 0 and ending with N-1. The D register of a
non-source PE changes its value only when it receives
data from its left side for the first time. The C reg-
ister of a non-source PE, on the other hand, changes
its value under either of the following two conditions:
(¢) when it has null data and receives data from its
left side, or (b) when it receives any data from its right
side.

An example of the BROADCAST algorithm is
given in Figure 10. As with the ranking procedure,
the array seq holds the predetermined sequence of di-
mensions, for both regular operation and flooding. In
the example, we consider a 4-cube with a = 0,b = 0.
In the context of our fault-free algorithm, the ‘start-
ing PE’ of a region means the first fault-free PE of
that region. As usual, flooding is not performed after
¢ = 0, but is performed after higher values of ¢. In the
end, we observe that fault-free PE’s have the proper
1) values.

procedure BROADCAST(a, b,var D)

1 D(6) = null, E(i) = null, ¢’ (§) = null
begin
2 case a,b :
3 0,0: D(3) = ¢(st(s) = 1) [/* region-starting index */
4 01: D(i) = Ro(i)(st(i) = 1)
5 1,0 D{i) = i(en(i) = 1)
6 1,1: D(i)= Ri(3)(en(i) = 1 & V(i) #null)
7 D(t) = Ry(1) — 1(en(i) = 1 & V(i) =null)
8 endcase
9 C(i) = D(i)
10 for ¢ = seq[0] to seg[2n — 2] do
11 if 0-th or odd-numbered step /* fault-free step */
12 c'y = c)
13 ¢ D) — CH)CE) # null)
14 D@)=C (i)(ig=1-a& D(i) = null
15 E(#) = C'(i)ig = 1~ a & D(i) # null)
16 C(i) = C'(i)(iq = 1 — a & C(i) = null)
17 C(i) = €' (i)iq = @)
13 endif
19 if even-numbered step and greater than 0 /* flood */
20 (i) — (DY C(i) = null)
21 D@) — DEYDGE) = null,ig = 1,9 = 0) /* vy */
22 D(i) — DEDYD() = null,ig = 0,¢ = 0) [* yv */
23 D(i) — B D)D) = null,ig = 0,g = 0) [*yv */
24 D(i) — DEDYD() = nullig =1,¢=1)
25 D(i) — DEDYDE) = null,ig = 0,¢ = 1)
26 D(i) — BEGOYD(E) = nullig =0,g= 1)
27 endif
238 endfor
end

Figure 9: Fault-tolerant BROADCAST algorithm

gy L] - L]
P , ,
o o A . x ;
quo e [L) [- [— [— [— [E—
T . "

U— [m——— | (2 |
a1 L] L Il L J]
ot L L | b e] Led bed | L g
FDO)
T : . s omom
w 2 s S ! ' s on
2 L F { L ! 1l n
-
N x woa o
(PRI (R IO (N OUU B R I NG B W]
Do)

‘
|
o) o o x b x 3 i) 7 X n n 3]
w 7o ox olx 1 alw owon oalnon s ow
PR it fo claty s sale)
ot b—ed | b il 1 | L 4
o — -
‘
]

o6

316

LY pr———

Figure 10: Example of BROADCAST

before CONCENTRATE
i 01 234 5 6 7 89 10111213 1415

HIDEIRENEDENERNK
0] [2@ s ®9 101N ® 14
aficr CONCENTRATE

ERDBENEENDDOERDN
w ot 2 o5 ®9 1011 o4

* active record

@ boundery between adjacen regions
T indicaies adjusied renk of an active recard

Figure 11: Example of CONCENTRATE for a 4-cube

procedure CONCENTRATE(var V,)
"o
1 Vl(i) =V (i) = null
) _ =
2 V') = V(i) G = B(>i))
egin

3 for g = seq[0] to seg[2n — 2] do
4 F(i):O,F'(i]znuH
5 if even-numbered step /* regular step */
6 F - Fe
7 W (i), 5GNY) = (V(5), RG)) (F (5) = null)
8 (V)L RN e (V) R (Fi) # null &
R(i)q # iq)
9 (W(ila), 5G9 & (W), $(1)) (W(E) # null)
10 endi
11 if odd-numbered step /* flood step */
12 (V@) B (1) — (W(ED), $(1D)5 (F (1) = null)
13 engif . "))
14V (i)=V ()R ()= R() (=R ()
15 V(i) =V (i), B(i) = R'(i) (i # R 1))
16 endfor - "
17 V(@) =V @), RG) = R (3)
end

Figure 12: Fault-tolerant CONCENTRATE algorithm

5.3 CONCENTRATE

This procedure (see Figure 12) deals with what is
known as the adjusted rank of a PE, which we define
as follows [11]: adjusted rank = absolute rank + index
of the region-starting/ending PE — absolute rank of
the region-starting/ending PE. The CONCENTRATE
procedure concentrates all active records (records with
bit p of the data being equal to 0 (1)) in the front (rear)
of their respective regions. The purpose of this proce-
dure should be clear from the example shown in Fig-
ure 11. In fact, the adjusted rank of a record is also its
final destination. The input to the algorithm consists
of the key values of active records, and their adjusted
ranks. V(i) and R(?) represent the key value and the
adjusted rank of an active record, respectively. They
are the transmitting registers of PE(7). The “primed”
registers are employed as temporary storage in order
to avoid conflicts.

317

procedure SET-FLAGS

1 r,(i) = null, st(i) = en(i) = null, r(i) = V(i)
begin

2 for ¢ = seq[0] to seq[2n ~ 2] do

3 if even-numbered step /* regular step */

4 D))

5 st(i) = 1 (r (i) # null & r(§) # r (i) & iq
st(i) = null)

6 st(i)= 0 (r' (4) # null & r(i) = r’ (i) & st(i) = nul)

7 en(i) = 1 (r() # null & r(i) # r (i) Lig = 0 &
en(s) = null)

3 en(i) =0 (r!(i) #null & r(i) = r'(i) & en(i) = null)

9 ()= () (¢ (1) £ null & igyy = ig)

endif

1 &

11 if odd-numbered step /* flood step */

12 sy e

18 st(i)=1(r (3) = null & SG) £ 1(3) & ig = 1 & st(3) =
null)

14 st(i)= 0 (r (i) = null & S(i) = r(3) & st(i) = null)

15 en(d) = 1 (r (i) = null & SGE) # r(i) & ig = 0 &

en(i) = null)

16 en(i):O(r‘(i):null& S(1) = r(3) & en(:) = null)
17 r(i) = SG) (¢ (8) = null & igq1 = i)
18 endif
19 endfor
end

Figure 13: Fault-tolerant SET-FLAGS algorithm

5.4 SET-FLAGS

This procedure sets the st(en) flag of a PE if it is the
starting(ending) PE of a region. SET-FLAGS simply
creates new region boundaries: every region is divided
into two sub-regions now, one containing the 0’s and
the other, 1’s. The algorithm is given in Figure 13.

5.5 The complete SORT procedure

The complete SORT procedure is given in Fig-
ure 14, and is similar to the fault-free SORT procedure
in [11]. Each iteration of the complete algorithm (lines
4 to 17, included) accomplishes radix sort along one
bit of the key values on the PE’s, and takes O(log N)
time. The main sorting algorithm, thus, is of complex-
ity O(log M+log N). Finding an FD pair, a one-time
procedure, takes O(log?N) time to complete. There-
fore, the complete algorithm may be accomplished in
O(log M+log N) 4+ O(log?N) time.

Line 2 sets the st and the en flags for the initial
region which encompasses all the PE’s. Lines 4-7 (8-
11) compute the adjusted rank for each key value with
V(i)p = 0 (V(3), = 1). After the CONCENTRATE
operation, the flag-setting operation is performed for
the newly-created regions in line 17.

procedure SORT
1 st(i)=en(i)=0
2 st{0)=en(N-1)=1

begin
3 forp=logM-1to0do
4 RANK(p,0,Rp)
) BROADCAST(0,0,5) /* region-starting indices*/
6 BROADCAST(O,I,R') /*lregion-starting ranks*/
7 Rg(3) = Ro(1) + S(7) — R (i) (V{i)p = 0) /* adj rank */
3 RANK(p,1,R;)
9 BROADCAST(1,0,E) /* region-ending indices*/

10 BROADCAST(\.],RI) /* region-ending ranks */
11 Ry(4) = Ry(d) + E(i) — B (i) (V(idp = 1) /* adj rank */
12 Vi(i) = Vp(3) = null
13 Va(i) = V(i) (V(E), = t)
14 CONCENTRATE(Vp, Hg) /* to destination */
15 CONCENTRATE(Vy, Ry) /* to destination */
16 V(i) = Vi(i) (V(i)p = t)
17 SET-FLAGS /* for starting/ending PE's */
13 endfor
end

Figure 14: The complete SORT procedure

6 CONCLUSION

In this paper, we developed a new fault-tolerant
sorting algorithm that sorts upto 2" = N keys in a
faulty SIMD hypercube. We introduced the concept of
flood dimensions in order to route data around faulty
processors. Our algorithm can be extended to run on
MIMD hypercubes. Future research directions include
exsending the algorithm to sort more than N keys, and
reducing the number of flood steps, if ot the time
complexity, needed to ensure the correct execution of
the sorting algorithm.

References

[1} B. Becker and H. Simon, “How Robust is the n-
Cube?)” Information and Computation, pp. 162-
178, 1988.

A. Wang, R. Cypher, and Mayr, “Embedding
Complete Binary Trees in Faulty Hypercubes,” In
Proc. International Symposium on Parallel and
Distributed Processing, pp. 112-119, December
1991.

[t

M. Y. Chan and S. J. Lee, “Fault-Tolerant Em-
bedding of Complete Binary Trees in Hyper-
cubes,” IEEE Transactions on Parallel and Dis-
tributed Systems, pp. 277-288, March 1993.

[4 G. S. Almasi and A. Gottlieb, Highly Paral-
lel Computing, Benjamin/Curnmings, Redwood
City, CA, 1989.

318

[5) Y. Chang, “Fault Tolerant Broadcasting Algo-
rithms 1n SIMD Hypercubes,” In Proc. Inter-
national Symposium on Parallel and Distributed
Processing, pp. 348-351, Dec. 1993.

{6] A. Mishra, Y. Chang, L. N. Bhuyan, and F. Lom-
bardi, “Fault-Tolerant Sorting in SIMD Hyper-
cubes,” Technical Report 95-004, Department of
Computer Science, Texas A&M University, Jan-
uary 1995.

[7] B. M. McMillin and L. M. Ni, “Reliable
Distributed Sorting Through the Application-
Oriented Fault Tolerance Paradigm,” I[EEE
Transactions on Parallel and Distributed Sys-

tems, pp. 411420, July 1992.

T. Leighton, B. Maggs, and R. Sitaraman, “On
the Fault Tolerance of Some Popular Bounded-
Degree Networks,” In 33rd IEEE Symp on Foun-
dations of Computer Science, pp. 542-552, 1992.

P. J. Narayanan, “Processor Autonomy on SIMD
Architectures,” In Proc. the ACM International
Conference on Supercomputing, pp. 127--136, July
1993.

[10] G. Blelloch, C. E. Leiserson, B. M. Maggs, C. G.
Plaxton, S. J. Smith, and M. Zagha, “A Com-
parison of Sorting Algorithms for the C'onnection
Machine CM-2.” In Symposium on Parallel Algo-

rithms and Architectures, pp. 3—16, July 1991.

[11] W.-M. Lin and V. K. P. Kumar, “Efficient
Histogramming on Hypercube SIMD Machines,”
Computer Vision, Graphics, and Image Process-

ing, vol. 41, pp. 104-120, 1990.

